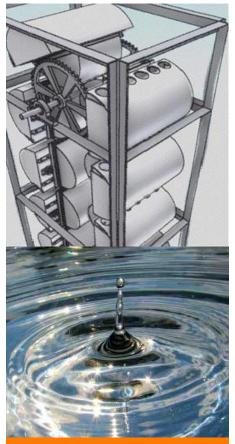


Kinetic Power Clean • Safe • Efficient

Functional principles 🕥 Kinetic Power Plant

A tank filled with water includes containers with a halved cylindrical shape that are connected via a chain drive.

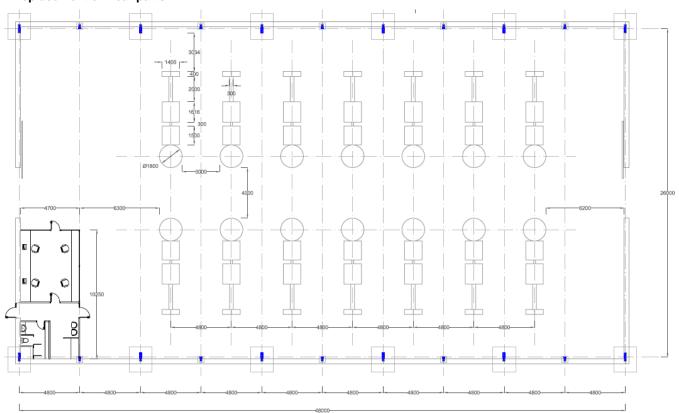

Automatic valves inside the containers connect with a compressor outside the tank when passing the lower vertex.

The compressor pumps air in the lowest container. The lifting force moves the container upwards and brings the next container in the right position to be filled with air. Thereby the Kinetic Power Plant (KPP) starts to function and begins to move a gear mechanism that drives a generator.

By passing the upper vertex each container leaves the water for a short period of time. When a container dips back into the water it again fills with water.

This patented technology with innovative solutions enables the KPP to generate much more electrical energy than is needed for running the compressor.

Switching off the compressor stops the KPP.


Water and air are the basic materials for a revolution of the energy infrastructure.

	KPP 5 1 module	KPP 40 8 modules	KPP 100 20 modules
Output	5 MW	40 MW	100 MW
Type of power plant	Kinetic Power Plant	Kinetic Power Plant	Kinetic Power Plant
Nominal output	5 MW	40 MW	100 MW
Output per unit	500 kW	500 kW	500 kW
Number of power plant u	nits 10 + 4	80 + 32	200 + 80
Number of generators	14	112	280
Annual production ø	43,200 MWh	345,600 MWh	864,000 MWh

Dimensions	KPP 5	KPP40	Transport and installation	KPP 5	KPP40
Number of modules/buildings 1 8			Construction period	6 months	6 months
Building height	8.2 m	8.2 m	Number of containers	6	48
Shaft depth	25 m	25 m		2 x 8t	16 x 8t
Building length	48 m	48 m per mod.		2 x 20t	16 x 20t
Building width	26 m	26 m per mod.		2 x 25t	16 x 25t
Shaft dimensions (a x d)	1.8 x 25 m	1.8 x 25 m per m.	Shipping weight	129.4t	1,035.2t

Technical inspection	KPP 5	KPP40
Maintenance contract		
Service interval	1 x / year	1 x / year
Replacement of wear parts		

KPP in comparison to actual energy sources

Cross section of two containers with automatic valves at lower vertex.

Shaft construction at work.

E-Cat-Deutschland GmbH Stuttgarter Str. 34 D-71384 Weinstadt Tel: +49 7151 277 958 0 info@e-cat-deutschland.de www.e-cat-deutschland.de

	fossil fuels	water power	wind energy	solar energy	nuclear fission	nuclear fusion	Kinetic Power
emission-free		\checkmark	\checkmark	\checkmark			\checkmark
very safe		\checkmark	\checkmark	\checkmark			\checkmark
inexhaustible		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
unlimited					\checkmark	\checkmark	\checkmark
low operational costs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
compact	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark
can be installed everywhere	\checkmark						\checkmark
universally applicable	\checkmark				\checkmark	\checkmark	\checkmark
now available	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

The Kinteic Power Plant as a new energy source is convincing in any way: efficient, clean, safe and environment-friendly.

The power generation units are installed in waterfilled shafts.

Energy centers of any size can be constructed by cascading the units.

The KPP is a product by **ROSCH INNOVATION S**[®] **GmbH** Leading Technology Solutions